Preliminary Technical Data

FEATURES

Very low offset voltage: 10uV max over temperature
Very low input offset voltage drift: $50 \mathrm{nV} /^{\circ} \mathrm{C}$ max High CMRR: 96dB
Digitally programmable gain (span) and output offset voltage
Open and short wire fault detection
Low pass filtering
Externally programmable output clamp voltage for driving low-voltage ADCs
Very wide input and output ranges
Single supply operation from 2.7 V to 5.5 V supplies

APPLICATIONS

Brake pressure sensing
Manifold pressure sensing
Leak-down pressure detection
Fuel pressure sensing
Balanced bridge sensors
Precision current sensing

PRODUCT OVERVIEW

AD8555 is a zero-drift bridge sensor signal amplifier with digitally programmable gain and output offset. Designed to easily and accurately convert variable pressure sensor and strain bridge outputs to a well-defined output voltage range, AD8555 will also accurately amplify many other differential or single ended sensor outputs. AD8555 utilizes ADI's patented low noise auto-zero and DigiTrim ${ }^{\circledR}$ technologies to create an incredibly accurate and flexible signal processing solution in a very compact footprint. In addition to extremely low input offset voltage and input offset voltage drift and very high DC and AC CMRR, the AD8555 also includes a pull-up current source at each analog input to allow open wire and shorted wire fault detection, and a low-pass filter function implemented via a single low-cost external capacitor. Output clamping set via an external reference voltage allows the AD8555 to drive lower voltage ADCs safely and accurately.

Gain is digitally programmable in a wide range from 70 to 1280 through a serial data interface. Gain adjustment can be fully simulated in-circuit and then permanently programmed with proven and reliable poly-fuse technology. Output offset voltage is also digitally programmable and is ratiometric to the supply voltage. When used in conjunction with an ADC referenced to the same supply, the system accuracy becomes immune to normal

[^0]supply voltage variations. Output offset voltage can be adjusted with a resolution of better than 0.4% of the difference between VDD and VSS. A lockout trim after gain and offset adjustment further assures field reliability.

AD8555AR is fully specified over the extended industrial (automotive) temperature range from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Operating from single-supply voltages from 2.7 V to 5.5 V , the AD8555 is offered in the narrow 8-lead SOIC package and the 4 x 4mm 16-lead LFCSP.

> 8-Lead SOIC
> (R-8 Suffix)

[^1]AD8555

ELECTRICAL SPECIFICATIONS

(@ $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0.0 \mathrm{~V} \mathrm{~V}_{\mathrm{CM}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=+2.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Typ	Max	Units
SYSTEM PERFORMANCE Input Offset Voltage	$\mathrm{V}_{\text {OS }}$			3	10	
Input Bias Current @ VPOS, VNEG	I_{B}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	18	28 30	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Bias Current @VCLAMP		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	5	pA nA
Input Offset Current @ VPOS, VNEG	$\mathrm{I}_{\text {OS }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	5	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Voltage Range @ VPOS, VNEG					3.6	
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3.9 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=70 \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3.9 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1280 \end{aligned}$	$\begin{aligned} & 70 \\ & 96 \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input Referred Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Ratiometricity				50		ppm
Linearity				20		ppm
Differential Gain Accuracy				1	3	
Differential Gain Temperature Coeff.					20	ppm/ ${ }^{\circ} \mathrm{C}$
DAC Accuracy				1	3	\%
DAC Offset				5	50	mV
DAC Temperature Coefficient					200	ppm $/{ }^{\circ} \mathrm{C}$
RF			9.6	16	22.4	$\mathrm{k} \Omega$
RF Temperature Coefficient				700		ppm/ ${ }^{\circ} \mathrm{C}$
VCLAMP Input Range			1.8		5	V
VD1			0.6	1.1	1.5	V
RP			100			k ת
POWER SUPPLY Supply Current	$\mathrm{I}_{\text {SY }}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$			4	mA
DYNAMIC PERFORMANCE Gain Bandwidth Product	GBP	$\begin{aligned} & 1^{\text {st }} \text { gain stage, } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 2^{\text {nd }} \text { gain stage, } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 2 \\ & 8 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
AMPLIFIER PERFORMANCE Amplifiers A1, A2, A3 INPUT CHARACTERISTICS Offset Voltage Offset Voltage Drift Input Bias Current Input Offset Current Input Voltage Range	$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	0.5	$\begin{gathered} 3 \\ 0.01 \\ 30 \\ 50 \end{gathered}$	$\begin{gathered} 10 \\ 0.05 \\ 100 \\ 200 \\ 3.9 \\ \hline \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ pA pA V
DYNAMIC PERFORMANCE Gain Bandwidth Product Amplifiers A1, A2 Amplifier A3	GBP	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 2 \\ & 8 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
NOISE PERFORMANCE Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

Parameter	Symbol	Conditions	Min	Typ	Max	Units
DIGITAL INTERFACE						
INPUT CHARACTERISTICS			0.05			10
DIGIN pulse width to load 0	tw 0	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mu \mathrm{s}$			
DIGIN pulse width to load 1	tw 1	$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	50			
time between pulses at DIGIN	tws	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10		$\mu \mathrm{~s}$	
DIGIN low		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		$\mu \mathrm{~s}$	
DIGIN high	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4		1	V	
DIGOUT logic 0		$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		5	V
DIGOUT logic 1		$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4		1	V

ABSOLUTE MAXIMUM RATINGS
Supply Voltage ..+6V Input Voltage VSS -0.3V to VDD + 0.3V
Differential Input Voltage ${ }^{1}$... $\pm 5.0 \mathrm{~V}$
Output Short-Circuit Duration to VSS or VDD.............Indefinite
Storage Temperature Range..........................- $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range........................ $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range........................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 10 sec)................ $+300^{\circ} \mathrm{C}$

Package Type	JA 2	JC	Units
8-Lead SOIC (R)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (CP)	44	31.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

${ }^{1}$ Differential input voltage is limited to ± 5.0 volts or \pm the supply voltage, whichever is less.
2 JA is specified for the worst case conditions, i.e. JA is specified for device soldered in circuit board for SOIC and TSSOP packages.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8555AR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC	SO-8
AD8555ACP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP	CP-16

PIN FUNCTION DESCRIPTIONS

SOIC / LFCSP	Name	Function
Pin $1 /$ Pins 15, 16	$\mathrm{V}_{\mathrm{DD}} / \mathrm{DV}_{\mathrm{DD}}, \mathrm{AV}_{\mathrm{DD}}$	Positive supply voltage
Pin $2 /$ Pin 2	FILT/DIGOUT	Unbuffered amplifier output in series with a resistor RF. Adding a capacitor between FILT and VDD or VSS will implement a low-pass filtering function. In read mode, this pin functions as a digital output
Pin 3 / Pin 4	DIGIN	Digital input
Pin $4 /$ Pin 6	VNEG	Negative amplifier input (inverting input)
Pin 5 / Pin 8	VPOS	Positive amplifier input (non-inverting input)
Pin 6 / Pin 10	VCLAMP	Set clamp voltage at output
Pin 7 / Pin 12	VOUT	Buffered amplifier output -buffered version of the signal at the FILT/DIGOUT pin. In read mode, VOUT is a buffered digital output.
Pin 8 / Pins 13, 14	$\mathrm{V}_{\text {SS }} / \mathrm{DV}_{\text {SS },} \mathrm{AV}_{\text {SS }}$	Negative supply voltage

Theory of Operation

AD8555 Functional Schematic

A1, A2, R1, R2, R3, P1 and P2 form the first gain stage of the differential amplifier. A1 and A2 are auto-zeroed op-amps to minimize input offset errors. P1 and P2 are digital potentiometers, guaranteed to be monotonic. Programming of P1 and P2 allow the first stage gain to be varied from 4.0 to 6.4 with 7 -bit resolution (see Table 1 and equation (3)), giving a fine gain adjustment resolution of 0.37%. R1, R2, R3, P1 and P2 each have a similar temperature coefficient, so the first stage gain temperature coefficient is lower than $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

A3, R4, R5, R6, R7, P3 and P4 form the second gain stage of the differential amplifier. A3 is also an auto-zeroed op-amp to minimize input offset errors. P3 and P4 are digital potentiometers, allowing the second stage gain to be varied from 17.5 to 200 in 8 steps (see Table 2); they allow the gain to be varied over a wide range. R4, R5, R6, R7, P3 and P4 each have a similar temperature coefficient, so the second stage gain temperature coefficient is lower than $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

RF together with an external capacitor connected between FILT/DIGOUT and VSS or VDD form a low pass filter. The filtered signal is buffered by A4 to give a low impedance output at VOUT. RF is nominally $16 \mathrm{k} \Omega$, allowing a 1 kHz low pass filter to be implemented by connecting a 10 nF external capacitor between FILT/DIGOUT and VSS or between FILT/DIGOUT and VDD. If low-pass filtering is not needed then the FILT/DIGOUT pin must be left floating.

A5 implements a voltage buffer which provides the positive supply to the amplifier output buffer A4. Its function is to limit VOUT to a maximum value, useful for driving analog-to-digital converters operating on supply voltages lower than VDD. The input to A5, VCLAMP, has a very high input resistance. It should be connected to a known voltage and not left floating. However, the high input impedance allows the clamp voltage to be set using high impedance source, e.g. a potential divider. If the maximum value of VOUT does not need to be limited, VCLAMP should be connected to VDD.

A4 implements a rail-to-rail input and output unity-gain voltage buffer. The output stage of A4 is supplied from a buffered version of VCLAMP instead of VDD, allowing the positive swing to be limited. The maximum output current is limited between 5 mA to 10 mA .

An 8-bit digital-to-analog converter (DAC) is used to generate a variable offset for the amplifier output. This DAC is guaranteed to be monotonic. To preserve the ratiometric nature of the input signal, the DAC references are driven from VSS and VDD, and the DAC output can swing from VSS (code 0) to VDD (code 255). The 8 -bit resolution is equivalent to 0.39% of the difference between VDD and VSS (e.g. 19.5 mV with a 5V supply). The DAC output voltage (VDAC) is given approximately by equation (1) below:

$$
\begin{equation*}
V D A C \approx\left(\frac{\text { code }+0.5}{256}\right)(V D D-V S S)+V S S \tag{1}
\end{equation*}
$$

The temperature coefficient of VDAC is lower than $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The amplifier output voltage (VOUT) is given by equation (2) below:

$$
\begin{equation*}
V O U T=G A I N(V P O S-V N E G)+V D A C \tag{2}
\end{equation*}
$$

where GAIN is the product of the first and second stage gains.

AD8555

Gain values

Table 1: First Stage Gain vs. Gain Code

First Stage Gain Code	First Stage Gain	First Stage Gain Code	First Stage Gain	First Stage Gain Code	First Stage Gain	First Stage Gain Code	First Stage Gain
0	4.000	32	4.503	64	5.069	96	5.706
1	4.015	33	4.520	65	5.088	97	5.727
2	4.030	34	4.536	66	5.107	98	5.749
3	4.045	35	4.553	67	5.126	99	5.770
4	4.060	36	4.570	68	5.145	100	5.791
5	4.075	37	4.587	69	5.164	101	5.813
6	4.090	38	4.604	70	5.183	102	5.834
7	4.105	39	4.621	71	5.202	103	5.856
8	4.120	40	4.638	72	5.221	104	5.878
9	4.135	41	4.655	73	5.241	105	5.900
10	4.151	42	4.673	74	5.260	106	5.921
11	4.166	43	4.690	75	5.280	107	5.943
12	4.182	44	4.707	76	5.299	108	5.965
13	4.197	45	4.725	77	5.319	109	5.988
14	4.213	46	4.742	78	5.339	110	6.010
15	4.228	47	4.760	79	5.358	111	6.032
16	4.244	48	4.778	80	5.378	112	6.054
17	4.260	49	4.795	81	5.398	113	6.077
18	4.276	50	4.813	82	5.418	114	6.099
19	4.291	51	4.831	83	5.438	115	6.122
20	4.307	52	4.849	84	5.458	116	6.145
21	4.323	53	4.867	85	5.479	117	6.167
22	4.339	54	4.885	86	5.499	118	6.190
23	4.355	55	4.903	87	5.519	119	6.213
24	4.372	56	4.921	88	5.540	120	6.236
25	4.388	57	4.939	89	5.560	121	6.259
26	4.404	58	4.958	90	5.581	122	6.283
27	4.420	59	4.976	91	5.602	123	6.306
28	4.437	60	4.995	92	5.622	124	6.329
29	4.453	61	5.013	93	5.643	125	6.353
30	4.470	62	5.032	94	5.664	126	6.376
31	4.486	63	5.050	95	5.685	127	6.400

$$
\begin{equation*}
\text { GAIN1 } \approx 4 *\left(\frac{6.4}{4}\right)^{\left(\frac{\text { code }}{127}\right)} \tag{3}
\end{equation*}
$$

Table 2: Second Stage Gain and Gain Ranges vs. Gain Code

Second Stage Gain Code	Second Stage Gain	Minimum Combined Gain	Maximum Combined Gain
0	17.5	70	112
1	25	100	160
2	35	140	224
3	50	200	320
4	70	280	448
5	100	400	640
6	140	560	896
7	200	800	1280

Open Wire Fault Detection

The inputs to A1 and A2, VNEG and VPOS, each have a comparator to detect whether VNEG or VPOS exceed a threshold voltage, nominally VDD-1.1V. If (VNEG > VDD-1.1V) OR (VPOS > VDD-1.1V), then VOUT is clamped to VSS. The output current limit circuit is disabled in this mode, but the maximum sink current is approximately 50 mA when $\mathrm{VDD}=5 \mathrm{~V}$. The inputs to A1 and A2, VNEG and VPOS, are also pulled up to VDD by currents IP1 and IP2. These are nominally 18nA each, and matched to within $5 n A$. If the inputs to A1 or A2 are accidentally left floating (e.g. an open wire fault), then IP1 and IP2 will pull them to VDD, which would cause VOUT to swing to VSS, allowing this fault to be detected. It is not possible to disable IP1 and IP2, nor the clamping of VOUT to VSS when VNEG or VPOS approach VDD.

Shorted Wire Fault Detection

The AD8555 provides fault detection, in the case where VPOS, VNEG, and VCLAMP shorts to VDD and VSS. Figure 1 shows the voltage regions at VPOS, VNEG, and VCLAMP which trigger an error condition. When an error condition occurs, the VOUT pin is shorted to VSS. Table 3 lists the voltage levels shown in Figure 1.

Figure 1: Voltage Regions at VPOS, VNEG, and VCLAMP, Which Trigger a Fault Condition

Table 3: Definition of VINL, VINH and VCLL

Voltage	Minimum Value	Maximum Value	Purpose
VINH	VDD -1.3 V	VDD -0.7 V	Short to VDD Fault Detection
VINL	0.05 * VINH	0.15 * VINH	Short to VSS Fault Detection
VCLL	VSS + 1.0V	VSS + 1.7V	Short to VSS Fault Detection

Floating VPOS, VNEG, or VCLAMP fault detection

A floating fault condition at the VPOS, VNEG, or VCLAMP pins is detected by using a low current to pull a floating input into an error voltage range defined in the previous section. In this way, the VOUT pin is shorted to VSS when a floating input is detected. Table 4 lists the currents used.

Table 4: Floating Fault Detection at VPOS, VNEG, and VCLAMP

Pin	Current	Goal of Current
VPOS	12nA to 24nA pull-up	Pull VPOS above VINH
VNEG	$12 n A$ to $24 n$ p pull-up	Pull VNEG above VINH
VCLAMP	$0.3 \mu \mathrm{~A}$ to $2 \mu \mathrm{~A}$ pull-down	Pull VCLAMP below VCLL

Device Programming

Digital Interface

The digital interface allows the first stage gain, second stage gain, and output offset to be adjusted and allows desired values for these parameters to be permanently stored by selectively blowing polysilicon fuses. To minimize pin count and board space, a single-wire digital interface is used. The digital input pin, DIGIN, has hysteresis to minimize the possibility of inadvertent triggering with slow signals. It also has a pull-down current sink to allow it to be left floating when programming is not being performed. The pull-down insures inactive status of the digital input by forcing a DC low voltage on DIGIN.

A short pulse at DIGIN from low to high and back to low again (e.g. between 50 ns and $10 \mu \mathrm{~s}$ long) loads a 0 into a shift register. A long pulse at DIGIN (e.g. 50μ s or longer) loads a 1 into the shift register. The time between pulses should be at least $10 \mu \mathrm{~s}$. Assuming VSS $=0 \mathrm{~V}$, voltages at DIGIN between VSS and $0.2 * \mathrm{VDD}$ are recognized as a low, and voltages at DIGIN between $0.8 * V D D$ and VDD are recognized as a high. A timing diagram example showing the waveform for entering code 010011 into the shift register is shown in Figure 2.

Figure 2: Timing diagram for code 010011

Table 5: Timing Specifications

Timing Parameter	Description	Specification
tw0	pulse width for loading 0 into shift register	between 50ns and $10 \mu \mathrm{~s}$
tw1	pulse width for loading 1 into shift register	$>=50 \mu \mathrm{~s}$
tws	width between pulses	$>=10 \mu \mathrm{~s}$

A 38 -bit serial word is used, divided into 6 fields. Assuming each bit can be loaded in 60μ s, the 38 -bit serial word to be transferred in 2.3 ms . Table 6 summarizes the word format.

Table 6: 38-bit serial word format

field 0	bits 0 to 11	12-bit start of packet "1000 00000001 "
field 1	bits 12 to 13	2-bit function
		00: change sense current
01: simulate parameter value		
		10: program parameter value
		11: read parameter value
		2-bit parameter
	00: second stage gain code	
		01: first stage gain code
		10: output offset code
		11: other functions

Fields 0 and 5 are the "start of packet" and "end of packet" fields respectively. Matching the "start of packet" field with "1000 0000 0001" and the "end of packet" field with "0111 11111110 " ensure that the serial word is valid and enables decoding of the other fields. Field 3 breaks up the data and ensures that no data combination can inadvertently trigger the "start of packet" and "end of packet" fields. Field 0 should be written first and field 5 written last. Within each field, the MSB must be written first and the LSB written last. The shift register features power-on-reset to minimize the risk of inadvertent programming; power-on-reset occurs when VDD is between 0.7 V and 2.2 V .

Initial State

Initially, all the polysilicon fuses will be intact. Each parameter will have the value 0 assigned. See Table 7 below.

Table 7: Initial state before programming

Second Stage Gain Code $=0$	Second Stage Gain $=17.5$
First Stage Gain Code $=0$	First Stage Gain $=4.0$
Output Offset Code $=0$	Output Offset $=$ VSS
Master Fuse $=0$	Master Fuse Not Blown

When power is applied to a device, parameter values are taken either from internal registers if the master fuse is not blown, or from the polysilicon fuses if the master fuse is blown. Programmed values have no effect until the master fuse is blown. The internal registers feature power-on-reset so that unprogrammed devices enter a known state after power-up; power-on-reset occurs when VDD is between 0.7 V and 2.2 V .

Simulation Mode

The simulation mode allows any parameter to be changed temporarily. These changes are retained until the simulated value is reprogrammed, the power is removed or until the master fuse is blown. Parameters are simulated by setting field 1 to 01 , selecting the desired parameter in field 2, and the desired value for the parameter in field 4 . Note that a value of 11 for field 2 is ignored during the simulation mode. Examples of temporary settings are given below.

Set the second stage gain code (parameter 00) to 011 and hence the second stage gain to 50 :
10000000000101001000000011011111111110

Set the first stage gain code (parameter 01) to 0001011 and hence the first stage gain to 4.166. 10000000000101011000001011011111111110

A first stage gain of 4.166 together with a second stage gain of 50 gives a total gain of 208.3. This gain will have a maximum tolerance of 3%.

Set the output offset code (parameter 10) to 01000000 and hence the output offset to 1.260 V when $\mathrm{VDD}=5 \mathrm{~V}$ and $\mathrm{VSS}=0 \mathrm{~V}$. This output offset will have a maximum tolerance of 3%.

10000000000101101001000000011111111110

Programming Mode

Intact fuses give a bit value of 0 . Bits with a desired value of 1 need to have the associated fuse blown. Since a relatively large current is needed to blow a fuse, only one fuse can be reliably blown at a time. Thus, a given parameter value may need several 38 -bit words to allow reliable programming. A 5.5 V supply is required when blowing fuses to minimize the ON resistance of the internal MOS switches which blow the fuse. The power supply must be able to deliver 250 mA of current, and at least $0.1 \mu \mathrm{~F}$ of decoupling capacitance is needed across the power pins of the device. A minimum period of 1 ms should be allowed for each fuse to blow. There is no need to measure the supply current during programming - the best way to verify correct programming is to use the read mode to read back the programmed values, and to re-measure the gain and offset to verify these values. Programmed fuses have no effect on the gain and output offset until the master fuse is blown; after blowing the master fuse, the gain and output offset are determined solely by the blown fuses and the simulation mode is permanently deactivated.

Parameters are programmed by setting field 1 to 10 , selecting the desired parameter in field 2 , and a single bit with the value 1 in field 4.

As an example, suppose the user wished to set the second stage gain permanently to 50 . Parameter 00 needs to have the value 00000011 assigned. Two bits have the value 1, so two fuses need to be blown. Since only one fuse can be blown at a time, the code

10000000000110001000000010011111111110
can be used to blow one fuse. The MOS switch which blows the fuse closes when the complete packet is recognized, and opens when the start-of-packet, dummy, or end-of-packet fields are no longer valid. After 1ms, the second code

10000000000110001000000001011111111110
can be entered to blow the second fuse.
To set the first stage gain permanently to a nominal value of 4.151, parameter 01 needs to have the value 0001011 assigned. Three fuses need to be blown; the following codes can be used, with a 1ms delay after each code:

10000000000110011000001000011111111110
10000000000110011000000010011111111110
10000000000110011000000001011111111110

To set the output offset permanently to a nominal value of 1.260 V when $\mathrm{VDD}=5 \mathrm{~V}$ and $\mathrm{VSS}=0 \mathrm{~V}$, parameter 10 needs to have the value 01000000 assigned. One fuse needs to be blown, and the following code can be used:

10000000000110101001000000011111111110

Finally, to blow the master fuse to deactivate simulation mode and prevent further programming, the code 10000000000110111000000001011111111110
can be used.
There are a total of 20 fuses. Since each fuse requires 1 ms to blow and each serial word can be loaded in 2.3 ms, the maximum time needed to program the fuses can be as low as 66 ms .

Parity Error Detection

A parity check is used to determine whether the programmed data of an AD8555 is valid, or whether data corruption has occurred in the non-volatile memory. Figure 3 shows the schematic implemented in the AD8555.

Figure 3: Functional circuit of AD8555 parity check

VA0 to VA2 is the 3-bit control signal for the second stage gain, VB0 to VB6 is the 7-bit control signal for the first stage gain, and VC0 to VC7 is the 8 -bit control signal for the output offset. PFUSE is the signal from the parity fuse, and MFUSE is the signal from the master fuse.

The function of the 2-input AND gate (cell and2) is to ignore the output of the parity circuit (signal par_sum) when the master fuse has not been blown. PARITY_ERROR is set to 0 when MFUSE $=0$. In the simulation mode, for example, parity check is disabled. After the master fuse has been blown, i.e. after the AD8555 has been programmed, the output from the parity circuit (signal par_sum) is fed to PARITY_ERROR. When PARITY_ERROR is 0, the AD8555 behaves as a programmed amplifier. When PARITY_ERROR is 1, a parity error has been detected, and VOUT is connected to VSS.

The 18-bit data signal (VA0 to VA2, VB0 to VB6, and VC0 to VC7) is fed to an 18-input exclusive-OR gate (cell eor18). The output of cell eor18 is the signal dat_sum. Dat_sum $=0$ if there is an even number of 1 's in the 18 -bit word; dat_sum $=1$ if there is an odd number of 1 's in the 18 -bit word. Examples are given in Table 8.

Table 8: Examples of dat_sum

Second Stage Gain Code	First Stage Gain Code	Output Offset Code	Number of Bits with 1	dat_sum
000	0000000	00000000	0	0
000	0000000	10000000	1	1
000	0000000	10000001	2	0
000	0000001	00000000	1	1
000	1000001	00000000	2	0
001	0000000	00000000	1	1
001	0000001	10000000	3	1
111	1111111	11111111	18	0

After the second stage gain, first stage gain, and output offset have been programmed, dat_sum should be computed and the parity bit should be set equal to dat_sum. If dat_sum is 0 , the parity fuse should not be blown in order for the PFUSE signal to be 0 . If dat_sum is 1 , the parity fuse should be blown to set the PFUSE signal to 1 . The code to blow the parity fuse is:

10000000000110111000000100011111111110
After the setting the parity bit, the master fuse can be blown to prevent further programming, using the code:
10000000000110111000000001011111111110

Signal par_sum is the output of the 2-input exclusive-OR gate (cell eor2). After the master fuse has been blown, PARITY_ERROR is set to par_sum. As mentioned earlier, the AD8555 behaves as a programmed amplifier when PARITY_ERROR = 0 (no parity error). On the other hand, VOUT is connected to VSS when a parity error has been detected (i.e. when PARITY_ERROR = 1).

Read Mode

The values stored by the polysilicon fuses can be sent to the FILT/DIGOUT pin to verify correct programming. Normally, the FILT/DIGOUT pin is connected only to the second gain stage output via RF. During read mode, however, the FILT/DIGOUT pin is also connected to the output of a shift register to allow the polysilicon fuse contents to be read. Since VOUT is a buffered version of FILT/DIGOUT, VOUT will also output a digital signal during read mode.

Read mode is entered by setting field 1 to 11 and selecting the desired parameter in field 2 ; field 4 is ignored. The parameter value, stored in the polysilicon fuses, is loaded into an internal shift register, and the MSB of the shift register is connected to the FILT/DIGOUT pin. Pulses at DIGIN shift the shift register contents out to the FILT/DIGOUT pin, allowing the 8-bit parameter value to be read after seven additional pulses; shifting occurs on the falling edge of DIGIN. An eighth pulse at DIGIN disconnects FILT/DIGOUT from the shift register and terminates the read mode. If a parameter value is less than 8 bits long, the MSBs of the shift register are padded with 0s.

For example, to read the second stage gain, the code
10000000000111001000000000011111111110
can be used. Since the second stage gain parameter value is only three bits long, the FILT/DIGOUT pin will have a value of 0 when this code is entered, and will remain 0 during four additional pulses at DIGIN. The fifth, sixth and seventh pulse at DIGIN
will return the 3-bit value at FILT/DIGOUT, the seventh pulse returning the LSB. An eighth pulse at DIGIN terminates the read mode.

Sense Current

A sense current is sent across each polysilicon fuse to determine whether it has been blown or not. When the voltage across the fuse is less than approximately 1.5 V , the fuse is considered not blown and logic 0 is output from the OTP cell. When the voltage across the fuse is greater than approximately 1.5 V , the fuse is considered blown and logic 1 is output.

When the AD8555 is manufactured, all fuses have a low resistance. When a sense current is sent through the fuse, a voltage less than 0.1 V is developed across the fuse. This is much lower than 1.5 V , so a logic 0 is output from the OTP cell. When a fuse is electrically blown, it should have a very high resistance. When the sense current is applied to the blown fuse, the voltage across the fuse should be larger than 1.5 V , so logic 1 is output from the OTP cell.

It is theoretically possible (though very unlikely) for a fuse to be incompletely blown during programming, assuming the required conditions are met. In this situation, the fuse could have a medium resistance (neither low nor high), and a voltage of approximately 1.5 V could be developed across the fuse. Thus, the OTP cell could sometimes output a logic 0 or a logic 1 , depending on temperature, supply voltage and other variables. To detect this undesirable situation, the sense current can be lowered by a factor of 4 using a special code. The voltage developed across the fuse would then change from 1.5 V to 0.38 V , and the output of the OTP would be a logic 0 instead of the logic 1 expected from a blown fuse. Correctly blown fuses would still output a logic 1. In this way, incorrectly blown fuses can be detected. Another special code would return the sense current to the normal (larger) value. The sense current cannot be permanently programmed to the low value. When the AD8555 is powered up, the sense current defaults to the high value.

The code to use the low sense current is:
100000000001000010 XXXX XXX1 011111111110

The code to use the normal (high) sense current is:
100000000001000010 XXXX XXX0 011111111110

Suggested Programming Procedure

1. Set VDD and VSS to desired values in the application. Use simulation mode to test and determine desired codes for second stage gain, first stage gain, and output offset. The nominal values for these parameters are given by Tables 1 and 2, and Equations (1) and (2); the codes corresponding to these values can be used as a starting point. However, since actual parameter values for given codes will vary from device to device, some fine tuning will be necessary for the best possible accuracy.
One way to choose these values is to set the output offset to an approximate value (e.g. code 128 for mid-supply) to allow the required gain to be determined. Then, set the second stage gain such that the minimum first stage gain (code 0) gives a lower gain than required, and the maximum first stage gain (code 127) gives a higher gain than required. After choosing the second stage gain, the first stage gain can be chosen to fine tune the total gain. Finally, the output offset can be adjusted to give the desired value. After determining the desired codes for second stage gain, first stage gain, and output offset, the device is ready for permanent programming.
2. Set VSS to 0 V and VDD to 5.5 V . Use program mode to permanently enter the desired codes for second stage gain, first stage gain, and output offset. Blow the master fuse to allow the AD8555 to read data from the fuses and to prevent further programming.
3. Set VDD and VSS to desired values in the application. Use read mode with low sense current followed by high sense current to verify programmed codes.
4. Measure gain and offset to verify correct functionality.

Suggested Algorithm to Determine Optimal Gain and Offset Codes

1. Determine desired gain, G_{A} (e.g. using measurements).

2A. Use Table 2 to determine the second stage gain G_{2} such that (4.00*1.04) < $\left(G_{A} / G_{2}\right)<(6.4 / 1.04)$. This ensures that the first and last codes for the first stage gain are not used, thereby allowing enough first stage gain codes within each second stage gain range to adjust for the 3% accuracy.
2B. Use simulation mode to set the second stage gain to G_{2}.
3A. Set the output offset to allow the AD8555 gain to be measured (e.g. use code 128 to set it to mid-supply).
3B. Use Table 1 or Equation (3) to set the first stage gain code $C_{G 1}$ such that first stage gain is nominally G_{A} / G_{2}.
3C. Measure resulting gain G_{B}. G_{B} should be within 3% of G_{A}.
3D. Calculate first stage gain error (in relative terms) $\mathrm{E}_{\mathrm{G} 1}=\mathrm{G}_{\mathrm{B}} / \mathrm{G}_{\mathrm{A}}-1$.
3E. Calculate error (in number of first stage gain codes) $\mathrm{C}_{\mathrm{EG} 1}=\mathrm{E}_{\mathrm{G} 1} / 0.00370$.
3F. Set first stage gain code to $\mathrm{C}_{\mathrm{G} 1}-\mathrm{C}_{\mathrm{EG} 1}$.
3G. Measure gain $G_{C} . G_{C}$ should be closer to G_{A} than G_{B}.
3 H . Calculate error (in relative terms) $\mathrm{E}_{\mathrm{G} 2}=\mathrm{G}_{\mathrm{C}} / \mathrm{G}_{\mathrm{A}}-1$.
3I. Calculate error (in number of first stage gain codes) $\mathrm{C}_{\mathrm{EG} 2}=\mathrm{E}_{\mathrm{G} 2} / 0.00370$.
3J. Set first stage gain code to $\mathrm{C}_{\mathrm{G} 1}-\mathrm{C}_{\mathrm{EG} 1}-\mathrm{C}_{\mathrm{EG} 2}$. The resulting gain should be within one code of G_{A}.
4A. Determine desired output offset O_{A} (e.g. using measurements).
4B. Use equation (1) to set output offset code $\mathrm{C}_{\mathrm{O} 1}$ such that output offset is nominally O_{A}.
4C. Measure output offset O_{B}. O_{B} should be within 3% of O_{A}.
4D. Calculate error (in relative terms) $\mathrm{E}_{\mathrm{O} 1}=\mathrm{O}_{\mathrm{B}} / \mathrm{O}_{\mathrm{A}}-1$.
4E. Calculate error (in number of output offset codes) $\mathrm{C}_{\mathrm{EO} 1}=\mathrm{E}_{\mathrm{O} 1} / 0.00392$.
4F. Set output offset code to $\mathrm{C}_{\mathrm{O1}}-\mathrm{C}_{\mathrm{EO1}}$.
4G. Measure output offset $\mathrm{O}_{\mathrm{C}} . \mathrm{O}_{\mathrm{C}}$ should be closer to O_{A} than O_{B}.
4 H . Calculate error (in relative terms) $\mathrm{E}_{\mathrm{O} 2}=\mathrm{O}_{\mathrm{C}} / \mathrm{O}_{\mathrm{A}}-1$.
4I. Calculate error (in number of output offset codes) $\mathrm{C}_{\mathrm{EO} 2}=\mathrm{E}_{\mathrm{O} 2} / 0.00392$.
4J. Set output offset code to $\mathrm{C}_{\mathrm{O} 1}-\mathrm{C}_{\mathrm{EO} 1}-\mathrm{C}_{\mathrm{EO} 2}$. The resulting offset should be within one code of O_{A}.

8-Lead Standard Small Outline Package [SOIC]
 Narrow Body
 (R-8)

Dimensions shown in millimeters and (inches)

16-Lead Lead Frame Chip Scale Package [LFCSP]
4×4 mm Body
(CP-16)
Dimensions shown in millimeters

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. All sales made pursuant to Analog Devices terms and conditions

[^1]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 World Wide Web Site: http://www.analog.com Fax: 617/326-8703 © Analog Devices, Inc., 2003

